A ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets

نویسندگان

  • Gitta Kutyniok
  • Wang-Q Lim
  • Rafael Reisenhofer
چکیده

Wavelets and their associated transforms are highly efficient when approximating and analyzing onedimensional signals. However, multivariate signals such as images or videos typically exhibit curvilinear singularities, which wavelets are provably deficient of sparsely approximating and also of analyzing in the sense of, for instance, detecting their direction. Shearlets are a directional representation system extending the wavelet framework, which overcomes those deficiencies. Similar to wavelets, shearlets allow a faithful implementation and fast associated transforms. In this paper, we will introduce a comprehensive carefully documented software package coined ShearLab 3D (www.ShearLab.org) and discuss its algorithmic details. This package provides MATLAB code for a novel faithful algorithmic realization of the 2D and 3D shearlet transform (and their inverses) associated with compactly supported universal shearlet systems incorporating the option of using CUDA. We will present extensive numerical experiments in 2D and 3D concerning denoising, inpainting, and feature extraction, comparing the performance of ShearLab 3D with similar transform-based algorithms such as curvelets, contourlets, or surfacelets. In the spirit of reproducible reseaerch, all scripts are accessible on www.ShearLab.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital Shearlet Transforms

Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. We exemplarily mention the systems of contourlets, curvelets, and shearlets. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most comm...

متن کامل

Digital Shearlet Transform

Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. We exemplarily mention the systems of contourlets, curvelets, and shearlets. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most comm...

متن کامل

Compactly Supported Shearlets

Shearlet theory has become a central tool in analyzing and representing 2D data with anisotropic features. Shearlet systems are systems of functions generated by one single generator with parabolic scaling, shearing, and translation operators applied to it, in much the same way wavelet systems are dyadic scalings and translations of a single function, but including a precise control of directio...

متن کامل

Classification of Edges using Compactly Supported Shearlets

We analyze the detection and classification of singularities of functions f = χB , where B ⊂ R and d = 2, 3. It will be shown how the set ∂B can be extracted by a continuous shearlet transform associated with compactly supported shearlets. Furthermore, if ∂S is a d−1 dimensional piecewise smooth manifold with d = 2 or 3, we will classify smooth and non-smooth components of ∂S. This improves pre...

متن کامل

Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings

We show that compactly supported functions with sufficient smoothness and enough vanishing moments can serve as analyzing vectors for shearlet coorbit spaces. We use this approach to prove embedding theorems for subspaces of shearlet coorbit spaces resembling shearlets on the cone into Besov spaces. Furthermore, we show embedding relations of traces of these subspaces with respect to the real a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014